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CD146 is an epithelial cell adhesion molecule that was originally identified as a tumor marker for mela-
noma (MCAM), due to its over-expression on fast proliferating cancers. However, recent evidence reveals
more roles for CD146, including miscellaneous processes such as development, signaling, cell migration,
mesenchymal stem cells differentiation, angiogenesis, and immune response, besides cell adhesion.
CD146 has increasingly become an important molecule, especially identified as a novel bio-marker for
angiogenesis and a promising target for cancer therapy. Here we have reviewed the dynamic research
of CD146, particularly newly identified functions and the underlying mechanisms of CD146.

� 2012 Elsevier Ireland Ltd. All rights reserved.
33

34
50

51

52

53

54

55

56

57

58

59

60

61

62

63

64
1. Introduction

CD146 (cluster of differentiation 146) is a cell adhesion mole-
cule (CAM) and belongs to the immunoglobulin superfamily (IgSF)
[1]. CAMs are proteins located on the cell surface involved in the
process of cell adhesion through the binding with other cells or
with the extracellular matrix (ECM). Cell adhesion is a fundamental
process required for the correct functioning of multicellular organ-
isms. CAMs are involved in an extensive range of physiological pro-
cesses, including cell–cell and cell-matrix interactions, cell
migration, cell cycle, and signaling as well as morphogenesis dur-
ing development and tissue regeneration. Increasing evidence
highlights the fundamental role of CAMs in a variety of pathologi-
cal progressions, such as cancer, inflammation, pathogenic infec-
tions, and autoimmune disease [2].
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Johnson and colleagues are discoverers of CD146. In 1987, they
reported that CD146 was expressed most strongly on metastatic
lesions and advanced primary tumors and was only rarely detected
in benign lesions [1]. CD146 is an integral membrane glycoprotein
of 113 kDa, whose sequence of amino acids (AA) consists of a signal
peptide, an extracellular fragment structure of V–V–C2–C2–C2
with five immunoglobulin-like domains, a transmembrane region
and a short cytoplasmic tail [3,4]. Subsequently, CD146 genome
localization and organization, promoter structure [5], and the
expression pattern in both human normal and malignant tissues
[6] were reported by Johnson’s laboratory. Most interestingly,
CD146 presents on the endothelia of blood vessels penetrating pri-
mary and metastatic melanomas, plays critical role in tumor angi-
ogenesis and hematogenous spread, providing the first evidence
for the mechanism underlying CD146-mediated tumor metastasis
[7].

CD146 is a specific antigen in human malignant melanoma has
also been confirmed simultaneously by another independent re-
search group [8,9]. Growing evidence has demonstrated that
CD146 is overly expressed on a variety of carcinomas in addition
to melanoma. Based on this attribute, CD146 attracts a plethora
of attention, and therefore becomes an almost certain potential
marker for tumor diagnosis, prognosis and treatment [7,10,11].
The majority of studies (50% more) about CD146 have focused on
the observation of its role in varied processes of cancers, through
down-regulation of CD146 expression via in vitro knockdown or
in vivo inhibition in xenografted tumors in mice [11]. Over the past
decades, precise details, especially concerning CD146 functions in
various cancers, have been documented and further summarized
0.1016/
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in many reviews. Most of reports support the notion that CD146
promotes tumor growth, angiogenesis, and metastasis, and regard
CD146 as a promising target for tumor therapy [4,7,10–14]. Thera-
peutic strategies targeting CD146 include humanized antibody
[15–17] and vaccination [18,19].

Contrast with the wide expression pattern of most other CAMs
in normal tissues, the CD146 expression is restricted to limited
adult normal tissues. However, its expression is broadly and highly
detected in embryonic tissues. Recent investigations have revealed
more multi-functional role for CD146, not merely limited to cell
adhesion but expanded to processes such as development, signal-
ing, cell migration and motility, proliferation, differentiation, and
immune response. We will discuss the various newly identified
functions of CD146 in physiological and pathological processes
with the aim to update and present the knowledge about CD146.
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2. The nomenclature of CD146

Human CD146 has been previously designated as different syn-
onyms, including MUC18, A32 antigen, S-Endo-1, MCAM (mela-
noma CAM), Mel-CAM (melanoma CAM), MET-CAM (metastasis
CAM) and HEMCAM (hemopoietic CAM), by several independent
laboratories. Lehmann et al. originally discovered CD146 with a
monoclonal antibody (mAb) of MUC18, which specifically reacted
with human malignant cells but not with benign cells of melanocy-
tic lineage, and thus designate this antigen as MUC18 [1,3]. Coinci-
dently, Shih et al. [8,9] identified the same molecule (MUC18) with
a mAb A32 as a human melanoma-associated antigen with gradu-
ally increasing expression as tumors acquired metastatic potential,
and named this antigen (CD146) as A32. Bardin et al. named CD146
as S-Endo-1 because this antigen constitutively expressed in all
types of human endothelial cells [20]. Due to the characteristic of
CD146 as an integral membrane CAM and a specific melanoma
antigen, it was named as MCAM (melanoma cell adhesion mole-
cule) [8] or Mel-CAM [21,22]. Recently, according to the critical
role of CD146 on modulating tumor metastasis, Wu et al. endows
CD146 another alias, MET-CAM [23].

The avian homologue of CD146, was initially discovered as the
receptor of neurite outgrowth factor (NOF) in the development of
the retina [24] and was named as Gicerin [25]. It has been revealed
that the avian CD146 is enriched in hemopoietic progenitors of
Fig. 1. Protein structure and isoforms of CD146. (A) Protein structure of human, mouse
transmembrane domain; CYT, cytoplasmic domain; wiggled line, conserved N-glycosyl
protein. (C) Three isoforms of chicken CD146 protein.

Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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embryonic bone marrow, and promotes thymus homing of pro-T
cells. Therefore, the avian CD146 is also called HEMCAM [26].
3. The structure of CD146 gene

The exon–intron structure of CD146 genes from divergent
examined species, i.e., human [5], mouse [27] and chicken [26],
is similar. The full-length mRNA consists of 16 exons. The first exon
of hCD146 (human CD146) encodes the 26-bp of 50-UTR region and
more than one-third of the signal leading peptide in the premature
hCD146 polypeptide sequence. The first V (variable region) set and
three C-2 (constant region) sets are each encoded by two exons.
The second V set is encoded by three exons. The sixteenth exon
contains a more than 1 kb 50-UTR region. Interestingly, introns of
the fifth and the fifteenth contain a consensus poly (A) signal; in
another words, CD146 gene contains three poly (A) signals
(Fig. 1A) [5]. The TATA- and CAAT-box-less core promoter of
hCD146 starts from about 505-bp upstream of the first ATG, is
GC-rich and encompasses several consensus binding motifs recog-
nized by transcription factors SP1, AP-2, and CREB [28,29]. Because
transcription factor AP-2 is crucial in an embryonic development,
multiple AP-2 binding sites in the CD146 promoter region imply
that CD146 may be up-regulated during development through
AP-2-mediated regulation at transcriptional level (Fig. 1B).

Analysis of mouse CD146 gene structure revealed that a selec-
tive mRNA splicing occurred within the fifteenth exon; generating
a mCD146-s (mouse CD146-short) [27]. The high similarity of
CD146 genes structure among divergent species and the existence
of three consensus poly (A) signal in the human and mouse CD146
genes, imply alternative mRNA splicing transcription of human
CD146 may occur as same as its orthologous gene of mouse
CD146. Thus, there is an urgent need to address whether or not
alternative mRNA splicing transcript of hCD146-s (human
CD146-short) is existed.
4. CD146 protein

CD146 homologous proteins exibit high sequence identical
among divergent species, including human [1,3], mouse
[30,31], rat [32,33], chicken [25,26] and zebrafish [34]. The ma-
ture CD146 is composed of an extracellular fragment, a single
, and chicken CD146. V, variable Ig-like domain; C-2, constant Ig-like domain; TM,
ation site. (B) The sequence similarity among human, mouse, and chicken CD146

molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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Fig. 2. Schematic representation of the exon–intron and promoter structure of the CD146 gene. (A) Exon–intron structure and the coding domains. Exons are presented by
the filled boxes; introns are shown by lines. SP, signal peptide; V, variable region Ig-like domain; C-2, constant Ig-like domain; TM, transmembrane domain; CYT, cytoplasmic
domain; (B) Promoter transcriptional regulatory motifs. AP-2, c-myb, Sp1 and CREB binding sites, are indicated by the position of the 5’ end of each site distant from the
transcription start site.
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trans-membrane region and a cytoplasmic tail [1,3]. A struc-
ture of V–V–C2–C2–C2 Ig-like domain and 8 putative N-glyco-
sylation sites are present in the extracellular fragment across
species [26] (Fig. 2A). The premature CD146 has a signal pep-
tide located on the anterior region of the amino terminal. The
cytoplasmic domain contains two potential recognition sites for
protein kinases C (PKC), an ERM (protein complex of ezrin,
radixin and moesin) binding site, a motif with microvilli exten-
sion and a double leucine motif for baso-lateral targeting in
epithelia (Fig. 2B).
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
j.canlet.2012.11.049
4.1. CD146 isoforms

CD146-l (long form) has been reported in all of species. CD146-s
(short form) was found in species of mouse [27], canine [35] and
avian [36]. The soluble form of sCD146 was examined in human
[37,38] and in chicken [26]. Long and short isoforms of CD146 have
same extracellular and transmembrane domains; differ by their
cytoplasmic tails. The AA composition of cytoplasmic tails is fully
disparate between each other, e.g., the big difference is found in
avian CD146-l and CD146-s. At the cytoplasmic domain, CD146-l
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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has two protein kinase C (PKC) phosphorylation sites; whereas
CD146-s has only one PKC site. Soluble CD146 (sCD146) lacks both
transmembrane and cytoplasmic regions. Using NH2-terminal
peptide sequencing, the AA composition of avian sCD146 was con-
firmed (Fig. 1C) [26].

Avian sCD146 shows similar homophilic adhesion activity with
its CD146-l and CD146-s, CD146-s and CD146-l have different
function. Regarding their cytoskeleton remodeling activity, canine
CD146-l, but not CD146-s, is capable of functioning in CD146-actin
cytoskeleton interaction and microvilli induction for ensuring epi-
thelium morphogenesis, its single dileucine motif (41–42) and the
serine 32 residue of the cytoplasmic domain is required for this
capability [35]. The above phenomenon was explained by the
study from avian CD146-l; its amino acids of 16–39 show to be in-
volved in the extension of microvilli [32]. Avian short form of
CD146 exhibits stronger activities of homophilic and heterophilic
adhesion than the CD146-l [26], because the cytoplasmic domain
of avian CD146-l was only involved in regulation of its activities,
but not was essential for its optimal adhesive activities [36,39].

4.2. Origin of CD146 isoforms

In the literature, there is no controversy about the origin of
CD146-s, i.e., CD146-s is derived from mRNA selective splicing in
all of examined species other than human. However, the reported
origin of CD146s (soluble form of CD146) is controversial
[26,40,41]. Avian soluble CD146 detected in hemopoietic progeni-
tors of embryonic bone marrow, is generated from mRNA splicing
[26]. Human soluble CD146 detected in the supernatant of cultured
endothelial cells and in the plasma of healthy subjects, is believed
to be generated from shedding from membrane-embedded CD146-
l [40,41]. Incubation with GM6001 inhibits the levels of sCD146
may be not sufficient for conclusion that human sCD146 is gener-
ated by shedding from CD146-l. Therefore, the contradictory origin
of sCD146 should be resolved with solid evidence in the future in
this field.
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5. CD146 expression regulation

How CD146 expression is regulated is highly pursued in the
CD146 research area. It has been gradually clear that the manner
of CD146 expression regulation is different in various tissues from
embryo, tumor and adult. Based on the maximal sequence similar-
ity between CD146 with an array of neural cell adhesion molecules
expressed during organogenesis, CD146 was assumed to be regu-
lated developmentally [3]. Although the regulation manner of
CD146 expression during development still remains unknown,
the expression regulation manner in tumors and in adults came
into prominent as following.

5.1. Epigenetic regulation of CD146 in tumors

Since the first observation that CD146 was overly expressed in
melanoma compared with normal melanocyte, a growing evidence
has revealed that in the growth of primary and metastatic tumors,
CD146 protein levels are significantly enhanced compared with
normal control samples [16]. Although numerous proteins have
been proved to be aberrantly up-regulated in tumors via genetic
alterations, the genetic research results indicate that increased
expression levels of CD146 in tumor tissues is not due to transloca-
tion, amplification or mutation of the CD146 gene [42,43].

Recently, an inspiring epigenetic study in the literature de-
scribed the first investigation about epigenetic modification of
CD146 gene promoter in prostate cancer. Liu et al. indicated that
CD146 was screened out from 36 candidate genes as an excellent
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
j.canlet.2012.11.049
candidate for prostate cancer-specific methylation. The elevated
expression levels of CD146 in prostate cancer were resulted from
hypermethylation at the promoter of the CD146 gene. Compared
with non-neoplastic prostate tissues, CD146 gene promoter was
specifically methylated in prostate cancer cell lines. Conventional
methylation-specific PCR technique showed greater hypermethy-
lation of the CD146 promoter (80%, 70/88) in primary prostate can-
cer compared to 12.5% (3/24) in non-neoplastic prostate. Prostatic
intraepithelial neoplasias and potential precursors of prostate car-
cinoma showed an intermediate methylation rate of 23% (7/30).
Importantly, it was found that the rate of CD146 promoter methyl-
ation was directly and positively correlated with the grade of tu-
mor stage in primary prostate carcinoma [44]. Because CD146
gene promoter is with high GC content [5], these studies employed
in prostate cancer may have broad implications in other tumors.
Further examination of hypermethylation of the CD146 promoter
in cancers other than prostate carcinoma is expected for discovery
the universal mechanism underlying CD146 overexpression in var-
ious cancers.
5.2. Inducible regulation of CD146 expression

It has been reviewed that at the adult stage, the expression of
CD146 is restricted to a few tissues, such as hair follicular cells,
activated T cells and intermediate trophoblast [10]. The inducible
expression of CD146 by environmental signals in normal adult
cells plays a major role for CD146-mediated actions in initiating
proper reactions [42,43].

Some proinflammatory cytokines are able to induce CD146
expression at mRNA level, e.g., the tumor necrosis factor-alpha
(TNF-a) and interleukin-1a (IL-1a) significantly induce CD146
mRNA expression in luteinizing granulosa cells [45], although this
induction effect was not observed in choriocarcinoma cell line JEG3
cells [46]. In airway epithelial cells, CD146 expression is consis-
tently up-regulated by T helper 2 cells (Th2) cytokine IL-13, and
such induction in primary human bronchial epithelial cells is in-
volved in bacterial adherence to epithelial cells [47].

Osmotic pressure also can induce CD146 expression. For exam-
ple, high glucose [48], high Ca2+ concentration [49] and increased
cAMP [21] are able to up-regulate CD146 mRNA expression in a
variety of cell types. Some growth factors, such as endothelin-1
(ET-1), transforming growth factor-beta (TGF-b), and nerve growth
factor (NGF) enhance the expression of CD146 mRNA in melano-
cytes [50], in hepatocytes [51], and in Schwann cells [52,53],
respectively. In addition, crosstalk between signal pathways of
protease-activated receptor 1 and platelet-activating factor recep-
tor is able to up-regulate CD146 mRNA [54]. The above reports
clearly indicate that in normal adult tissues, inducible CD146
expression play critical role in responding to environmental stim-
uli, such as proinflammatory cytokines, growth factor and osmotic
pressure for initiating proper inflammatory reactions, cell prolifer-
ation and cellular communication.
6. CD146 and adhesion

CAMs are proteins located on the cell surface involved in the
binding with other cells or with the extracellular matrix (ECM) in
the process of cell adhesion. CAMs stick cells to each other and
to their surroundings through interacting either with the same
kind (homophilic binding) or with other CAMs, or the extracellular
matrix (heterophilic binding). Four CAM families have been identi-
fied: the cadherins, the selectins, the integrins, and the immuno-
globulin CAM superfamily (IgSF-CAM). CD146 belongs to the
members of the Ig-CAM family, who are calcium-independent
CAMs. Vainio et al. showed that the strength of CD146 adhesion
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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is weak in comparison to adhesion activity with selectins, inte-
grins, and other IgSF proteins such as ICAMs, VCAM-1, and PE-
CAM-1 [26]. CD146-adhesive properties have been investigated
in vitro mainly through cell aggregation and solid-phase binding
assays.

Taira and colleagues report that the homophilic binding of
CD146–CD146 is involved in the neurite extension and neuron
development [25,36,39,53,55–58]. In human cell lines, different re-
search groups also observed that homophilic binding of CD146 is
implicated in the control of cell–cell cohesion [20,59,60].

The first binding partner of CD146 reported in literature is a
protein of neurite outgrowth factor (NOF), an extracellular matrix
component belonging to the laminin family, found in CD146-en-
riched chicken embryonic retinas [24]. Later, Taira and colleagues
further confirm that CD146 binds with NOF using recombinant
CD146 as a probe [25]. Recently, it has been shown that Laminin-
411 is a ligand of CD146 to facilitate T cells entry into the central
nervous system [61]. This heterophilic binding of CD146 was also
found in melanoma cell lines for mediating melanoma cell-
extracellular matrix adhesion [8,59,62]. However, the identity of
these cognate CD146-binding ligands has not been revealed yet.

Several lines of evidence suggest that CD146 adhesion activity
is required for physiological processes. For instance, requirement
of CD146-mediated adhesion is proved in trophoblast. The differ-
entiation potential of intermediate trophoblast is positively corre-
lated with CD146 expression levels [10,63–65]. Using our mAb of
AA98 against CD146, we present direct evidence for the role of
CD146 in mediating embryonic attachment and trophoblastic inva-
sion [66,67]. We find that CD146 is specifically expressed in the
receptive maternal uteri and invasive embryonic trophoblasts dur-
ing the early stages of pregnancy, but it is completely absent in the
non-pregnant uterus. Blocking CD146 with a function-perturbation
antibody AA98 significantly inhibits the attachment of blastocysts
onto the receptive uterine luminal epithelial monolayer, the
trophoblastic outgrowth of blastocysts and ectoplacental cones
[66,67], suggesting that CD146 adhesion activity may be varied
during different developmental stages, and is required for some
specific physiological processes, such as implantation.
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7. CD146 and MSCs

MSCs defines a cell population of plastic-adherent multipotent
mesenchymal stromal cells, comprising of a subset of cells with
stem cell activity (i.e. the ability to undergo self-renewal or asym-
metric cell division), which is also referred to as mesenchymal
stem cells. Multipotent MSCs can differentiate into three cell types
including: osteoblasts (bone cells), chondrocytes (cartilage cells),
and adipocytes (fat cells). The umbilical cord MSCs have more
primitive properties than other adult MSCs obtained later in life.
Postnatal MSCs niche is located within the perivascular site within
microvessels [68,69].

In 2007, CD146 was identified as a putative MSC marker by
comparing the capacities of proliferation, differentiation, and
transfection between human umbilical cord perivascular cells
(HUCPVCs) and bone marrow mesenchymal stromal cells (BMSCs).
HUCPVCs show a higher proliferative potential than BMSCs and are
capable of osteogenic, chondrogenic, and adipogenic differentia-
tion. Higher levels of CD146 were found to be expressed on
HUCPVCs, suggesting CD146 is a MSC marker [70]. This notion
was supported by the observation that CD146-positive perivascu-
lar cells show similar functional and gene-expression profiles with
MSCs [71]. Therefore, the correlation between CD146 expression
levels and multipotency of MSCs attracts investigations about the
effects of CD146 up-regulation on phenotype of MSCs. CD146 up-
regulation on highly proliferative MSCs, rendering cells capable
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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of trilineage differentiation [72], is linked to multipotency of trilin-
eage potential [73]. Mesenchymal stem cells with greater differen-
tiation potential express higher levels of CD146 on the cell surface
[74]. Thus CD146 has been seen as a marker for MSCs isolated from
multiple adult and fetal organs [71,72,75], suggesting that CD146
is probably actively involved in differentiation and organogenesis
during development.
8. CD146 and development

By comparing the abundance of CD146 between embryonic tis-
sues and mature tissues, it has been found that high levels of
CD146 are expressed in epithelia of nervous systems [56], trachea
[76], kidney [77,78] and oviduct [79] in embryonic tissues. After
maturation, its protein levels decrease dramatically [80]. In addi-
tion, at the different stages of embryonic development, CD146
expression is variable. In early human embryos from 7 to 12 weeks
of gestation, CD146 expression is higher compared with embryonic
tissues after 16 weeks of gestation [1,3]. Among the investigations
about CD146 participating in organogenesis, more attention is at-
tracted in the importance of CD146 in development of nerves sys-
tem, kidney [1,3,25,77], and retina [81].

8.1. CD146 with nerves system development

In chicken model system, it is clear CD146 is expressed during
the developmental stage when neurons migrate or extend neurites
to form a neural network through binding with NOF, a extracellular
matrix glycoprotein of the laminin family [25,53,76,82], it is also
found that CD146 participates in the development of the cerebel-
lum [83], and peripheral nervous systems development [52,84].
CD146 promotes neurite extension and migration of embryonic
neurons in vitro by its homophilic and heterophilic adhesion activ-
ities [80]. In mouse [56] and zebrafish model systems [85], CD146
is also identified to play the functional roles during nervous sys-
tems development as a neuron-specific gene. Thus, CD146 has
been seen as a developmentally regulated CAM in neuroectoder-
mal tissues [86]. Further accurate analysis of CD146 localization
in central nervous system (CNS) reveals that CD146 is preferen-
tially expressed on vasculature within the CNS but not on neurons
and glial cells [87], suggesting that CD146 may promote nervous
system development through facilitating adherence between neu-
rons and glial cells with endothelial cells on vasculature.

8.2. CD146 with kidney development

CD146 is also involved in the formation of normal kidney by its
homophilic and heterophilic adhesive activities. In the embryonic
chicken, CD146 is considered to play a role in the normal develop-
ment of kidney, because it is expressed abundantly in the embry-
onic organ and only slightly in the mature organ. After kidney
development has been completed, CD146 expression is suppressed
in most cell types in kidney [77]. Cell-aggregation assays further
show that CD146 in primary culture cells from embryonic kidneys
have strong aggregation activities than those cells from adult kid-
ney. This is directly supported by the observation that CD146 from
embryonic kidney but not from adult kidney binds to purified neu-
rite outgrowth factor [78]. Contrast with this, increasing reports
indicate that the close association of CD146 with kidney is required
for function of normal kidney [38,88–90].

8.3. CD146 with retina development

During the retinal development of Japanese quail, CD146 is
thought to be critical, because it was highly expressed in the devel-
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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oping retina but suppressed in the mature retina. When incubation
with a CD146 antibody, this retina histogenesis was severely im-
paired [91]. CD146 is required for the retinal development is fur-
ther supported by the study that an abnormal retina of mutant
quail has no CD146 expression is found. Contrast with the mutant
quail, CD146 protein was enriched in the normal retina of wild-
type quail [81].
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9. CD146 and immunology

Human CD146 is expressed by most elements of the microenvi-
ronment of normal human thymus, and is regarded as a pan-
antigen with essential role for the maintenance of thymic
architecture and function through mediating lymphocyte trans-
membrane migration and lymphocyte homing [92]. Human
CD146 has been demonstrated to appear on a small subset of T
[93] and B lymphocytes [94] in the peripheral blood of healthy
individuals. By promoting the rolling on the inflammation marker
VCAM-1 via microvilli induction and displaying adhesion receptor
activity involving possible homophilic CD146–CD146 interactions,
CD146 might be involved in the recruitment of activated T cells to
inflammation sites [35]. Thus, CD146 may be involved in the
extravasation and/or homing of activated T cells [93].

The concept that CD146 augments the tissue-infiltrative poten-
tial and inflammatory response in various inflammatory diseases
has been supported by growing evidence. Increased levels of
CD146 are positively correlated with active inflammatory reactions
in idophathic myopathy [95], chronically inflamed tissues [96],
inflammatory skin disease [97], rheumatoid arthritis [98], inflam-
matory bowel disease [40,41], chronic obstructive pulmonary dis-
ease [99], and multiple sclerosis (MS) disease [61,100].

CD146 actively regulating inflammatory response is also evi-
denced from the investigation about avian and mouse CD146.
Avian CD146 is also detected in lymphoid tissues such as the
spleen and thymus [26]. In addition, it has been also identified as
a marker of T lymphocyte progenitors in the bone marrow
[26,101–103]. The CD146+ T cells display an immunophenotype
consistent with effector memory cells and have a distinct gene pro-
file from the CD146� T cells [104,105]. Mouse CD146 has also been
seen as a marker of mouse NK (natural killer) cell maturation to de-
fine final stages of NK cell maturation [106]. CD146+ NK cells are
less cytotoxic and produce less IFN-gamma than CD146� NK cells
upon stimulation. In addition, over-expression of CD146 in NK cells
decreased rolling velocity and increased cell adhesion to an endo-
thelial cell monolayer and increased microvilli formation [107].
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10. Signaling transduction by CD146

In addition to its role in cell–cell adhesion, CD146 participates
in outside-in signaling in endothelial cells and is involved in the
dynamics of actin cytoskeleton rearrangement. As shown in
Fig. 3A, CD146 engagement initiates protein kinase phosphoryla-
tion cascade through association with Fyn, a Src family kinase.
Phosphorylated Fyn in turn transfers phosphate to the downstream
kinase of PKC-c, which triggers Ca2+ burst within cells. Conse-
quently, the induced association among proteins of P130, Pyk2,
and paxillin, as well as the activated p125 (FAK) promotes polari-
zation actions of actins. Thus, this CD146-mediated signaling path-
way deciphers the mechanism that CD146 promotes normal cell
motility and increases tumor cell invasiveness through transmit-
ting the outside signals to downstream-signaling components for
cytoskeleton remodeling [108,109].

CD146 transduction of proliferation signal through PI3K/AKT
pathway provides rational for tumor proliferation and survival
(Fig. 3B). In melanoma, the expression level of CD146 is
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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reciprocally regulated by PI3K/AKT. Up-regulated CD146 activates
endogenous PI3K/AKT, whose phosphorylation promotes CD146
expression in a positive feedback way. Although the exact mecha-
nism underlying the reciprocal up-regulation between CD146 and
PI3K/AKT remains elusive, the signaling axis of CD146/PI3K/AKT
may manifests how CD146 inhibits apoptosis and increases sur-
vival ability of tumors. Whether or not a similar mechanism is also
employed in normal cells, or in other tumor types remains unclear
[110].

CD146 in cell signaling for up-regulating the expression of Id-1
depicts a possible mechanism by which CD146 contributes to mel-
anoma metastasis (Fig. 3C). Id-1 is an oncogene in several malig-
nancies, including melanoma. CD146 overexpression up-regulates
Id-1 through down-regulation of ATF-3, a transcriptional inhibitor
of Id-1 [111]. However, it is not clear whether CD146 up-regulating
the expression of Id-1 is a universal phenomenon in all of malig-
nant tumors or is just restricted to melanoma.

We have reported that CD146 is a novel target for tumor angi-
ogenesis [112]. This exciting discovery arouses our great interest in
the mechanism underlying CD146-induced angiogenesis. After sys-
tematically investigation, CD146-mediated signaling pathway
came to prominence via CD146–CD146 dimmerization on the cell
surface. Over-expressed CD146 enhances an EMT process through
up-regulation of transcriptional factor Slug, who controls the tran-
scription of various EMT-related elements, such as MMP-9
[113,114]. More importantly, CD146 augments VEGFR/NF-jB sig-
naling with VEGFR-2 together as a co-receptor for VEGF ligand
[115], provides further explicit evidence for the key role of
CD146 on cancer metastasis through CD146/NF-jB [116,117] as
shown in Fig. 3D. However, better understanding its function in
signaling transduction requires further study on its crosstalk with
members of various signaling pathways.
11. CD146 and angiogenesis

Angiogenesis is the physiological process relating the growth of
new blood vessels from pre-existing vessels. Angiogenesis is a nor-
mal and fundamental process in growth and development, as well
as in wound healing and in granulation tissue. However, it is also
an essential step in the transition of tumors from a dormant state
to a malignant one, leading to the use of angiogenesis inhibitors for
cancer treatment. Although modern terms of angiogenesis differ-
entiate into vasculogenesis, angiogenesis, and arteriogenesis, the
nature of angiogenesis is the formation of new blood vessels from
endothelial cells present in pre-existing blood vessels.

Using zebrafish as a developmental model system, CD146 has
been defined as a marker of vascular endothelial cells with high
expression levels on the whole vascular tree during embryonic
developmental stage, and plays crucial role for vascular develop-
ment [108,118]. On the one hand, knockdown of CD146 protein
expression severely hinders vascular development, leads to poorly
developed intersomitic vessels, and lacks of blood flow through the
intersomitic vessel region [34]; on the other hand, the gain-
of-function analysis of CD146 in zebrafish, in which enforcing
expression of CD146 constructs, induces sprouting angiogenesis
[118].

Angiogenesis is also required for the spread of a tumor, or
metastasis. Tumors induce angiogenesis through secreting various
growth factors (e.g. VEGF, vascular endothelial growth factor)
[119]. Already in 1994, Johnson and colleagues reported that
CD146 was overly expressed in tumor blood vessels, and CD146
up-regulation was closely associated with tumor angiogenesis.
They used monoclonal antibodies against three different epitopes
of CD146 to determine the expression pattern of MUC18 in human
tissues. This analysis showed that expression of CD146 is not only
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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Fig. 3. CD146 mediated signaling pathways. (A) CD146 stimulates the tyrosine phosphorylation of focal adhesion kinase p125 (FAK) in human endothelial cells. (B) Reciprocal
regulation of CD146 and AKT in human melanoma. (C) Expression of Id-1 is regulated by CD146. (D) CD146 actives NF-jB transcriptional factor through activating of P38
kinase.
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present on melanoma cells but also on the endothelia of blood ves-
sels penetrating primary and metastatic melanomas, suggesting a
complex involvement of CD146 in tumor angiogenesis and metas-
tasis [6]. However, whether CD146 is also involved in other types
of tumors remains unknown.

During the pursuit of monoclonal antibodies (mAbs) against
endothelial cell-surface proteins specific for tumor vasculature,
we observed that anti-CD146 mAb AA98 showed remarkably re-
stricted immunoreactivity against intratumoral neovasculature
comparing with blood vessels of normal tissues. Angiogenesis
was inhibited by mAb AA98 in chicken chorioallantoic membrane
(CAM) assays and in three xenografted human tumor models in
mice. Thus, in 2003, we proposed that CD146 may exert a pivotal
role in angiogenesis of many types of tumors, providing the unam-
biguous evidence that CD146 is a certain target for tumor angio-
genesis [112]. CD146 promoting tumor angiogenesis has been
also observed in our subsequent systematic studies through
tube-formation and wound healing assay [113]. The direct evi-
dence of CD146 in tumor angiogenesis is that we find CD146 is a
component of VEGF signalsome as a co-receptor with VEGFR-2
(vascular endothelial growth factor receptor-2) in tumor angiogen-
esis [115,117]. Therefore, through our long-term investigation of
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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CD146, we provide explicit evidence that CD146 is a promising tar-
get for combating abnormal vasculature in tumors.
12. CD146 and cancer

Sers et al. found that CD146 was highly expressed on advanced
primary and metastatic melanomas but not on normal melanocyte,
and that CD146 was associated with tumor progression and the
development of metastasis in human malignant melanoma [5].
Subsequent investigations reveal that this protein was overly ex-
pressed in malignant and metastatic lesions [16,120] in most of
cancer types for promotion of tumor progression and metastasis
as summarized in Tables 1 and 2. Contrary to this, scarce observa-
tions report that CD146 is down-regulated or absent in some of
cancers or cancer cell lines with tumor suppression functions [11].

The mechanism underlying the potential of CD146 in promoting
tumor progression and metastasis has been attracting a plethora of
attention. Through modulating its expression, over-expression of
CD146 has been found to increase the motility and invasiveness
of many tumor cells in vitro and metastasis in vivo by altering
the expression of various elements in apoptosis, survival, prolifer-
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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Table 1
The consequence of elevated CD146 on cancer.

Cancer types Consequences Refs.

Melanoma Increased metastasis and angiogenesis [6,8,9,22,42,131–134]
Renal cell carcinoma Increased recurrence rate [135]
Gastric cancer Increased EMT and poor prognosis [136]
Lung adenocarcinoma Poor overall survival rate [137]
Gallbladder adenocarcinoma Increased progression, invasion, and metastasis, [138]
Malignant pleural mesothelioma Poor prognosis [139]
Adenoid cystic carcinoma Increased progression [140]
Breast tumors Increased migration, aggressiveness, and EMT [141–143]
Infantile haemangioma Increased progression [144]
Non-small cell lung cancer Poor overall survival rate [145]
Parotid carcinoma Increased progression and invasion, [146]
Prostate cancer Increased metastasis [147–149]
Peripheral nerve tumors Increased malignant transformation [150]
Hematological malignancies Increased tumorigenesis [151]
Chicken oviductal adenocarcinomas Increased metastasis [79]

Table 2
The consequence of elevated CD146 on cancer cell lines.

Cancer cell lines Consequences Refs.

Melanoma Increased migration and metastasis [114,152]
Breast cancer Increased EMT [113,122,153]
Osteosarcoma Increased progression [154]
Hepatocarcinoma Increased angiogenesis [128]
Prostate cancer Increases tumorigenesis and metastasis [23,155]
Ovarian cancer Invasion and metastasis [156]
Mouse prostate adenocarcinoma Increased metastasis [157]
Mouse melanoma Increased tumorigenicity, motility, and metastasis [31,158]
Rat colorectal adenocarcinoma Increased metastasis [159]
Mouse mammary carcinoma Increased metastasis [160]
Chicken lymphoma Increased metastasis [161]
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ation, and angiogenesis. Recently, CD146 mediating hematogenous
or lymphatic spreading of cancer cells indicates the possible route
of CD146-resulted tumor metastasis [60,112,121]. CD146 overex-
pression increases angiogenesis ability by elevating levels of VEGF,
VEGFR2, and CD31 points to another alternative way that CD146
affects tumor metastasis [23].

CD146 is highly expressed on the whole vascular tree during
embryonic developmental stage in zebrafish [108]. Our laboratory
finds that CD146 is overly expressed on tumor vessel compared
with normal blood vessels [112] and enhances tumor angiogenesis
through crosstalk with VEGFR2, which interact with VEGF that may
be released from circulation [115]. Another role of CD146 in metas-
tasis has been found that CD146 promotes an EMT (epithelial–
mesenchymal transition), a critical step for tumor metastasis
through modulating the remodeling of cytoskeleton [114,122].
Thus, defining its functional domains, its cognate ligand (s), and
cofactor regulators may be crucial for untwisting the crucial step
of CD146-mediated tumor metastasis.
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13. CD146 as a target for cancer therapy

Over the past decades, ‘‘CD146 is an attractive target for cancer
therapy’’ has been validated and documented by more than 50
investigations as summarized in Tables 1 and 2, and further sum-
marized in many reviews [4,7,10–14]. Better understanding tumor
growth and metastasis should obtain more insight on stromal
microenvironment, such as the angiogenesis. Much research has
been devoted to evaluating the reciprocal influences of angiogene-
sis with tumor development and progression. A more deeply
exploring the complex parameters of tumor angiogenesis that im-
pact the tumor progressions will help to improve anti-angiogenic
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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strategies, benefiting not only for cancer treatment, but also for
preventing recurrence. CD146 has long been regarded as a bio-
marker of malignant metastasis or tumor angiogenesis [7]. Immu-
notherapy strategy targeting CD146 has been endeavored for tu-
mor control and treatment [17,112].

Bar-Eli’s laboratory has successfully developed a fully human-
ized anti-CD146 antibody (ABX-MA1) [15,17,123]. Their preclinical
studies clearly indicate that ABX-MA1 possesses strong effect on
tumor growth, angiogenesis and metastasis of human melanoma.
A375SM and WM2664 cells, two melanoma cell lines, with high
expression levels of CD146 were used in the studies of xenografted
human tumor models in mice. Mice treated with a once weekly
injection of ABXMA1 developed smaller tumors at the injection site
(after subcutaneous injection) and fewer lung metastases (after
intravenous injection) compared with control IgG-treated mice.
In vitro study shows that ABX-MA1 disrupts spheroid formation
by melanoma cells with exogenously expressing CD146, impairs
those cells to attach to human HUVEC cells, and significantly inhib-
its invasion activity of those cells through Matrigel-coated filters.
ABX-MA1 may target both of the tumor and neo-vascular endothe-
lial cells to inhibit tumor growth and metastasis of melanoma
[15,17,123].

Our laboratory raised an array of mAbs against CD146, among
which only AA98 binds with a conformational epitope (Fig. 4A),
although AA1, AA2, and AA98 can bind to CD146 on living cells
(Fig. 4B). The binding of AA98 with CD146 significantly impairs
the dimmer formation of CD146, and thus blocking the signaling
pathways mediated by CD146 (Fig. 4C) [112,124,125]. The power-
ful inhibitory effect of anti-CD146 mAb AA98 on tumor growth and
on tumor angiogenesis has exhibited in several in vivo xenografted
cancers, including melanoma, pancreatic and breast cancer [126–
128]. At present, the mAb AA98 has been successfully developed
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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Fig. 4. Anti-CD146 antibody AA98 inhibits tumor growth and metastasis. (A) An array of mouse anti-CD146 antibodies was raised in Yan’s laboratory. The epitope of AA 98
mAb is located within the conformational site, which is critical for dimmer formation of CD146. (B) Antibodies of AA1, AA2, and AA98 recognize CD146 on living cell surface.
(C) The AA 98 mAb, but not other mAbs, has blocking effect on CD146-mediated signaling pathway of NF-jB activation. (D) AA 98 has powerful activity in inhibiting
infiltration of T lymphocytes into CNS resulting in reduced EAE (experimental autoimmune encephalomyelitis) severity in mice.
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as a novel tumor-targeting carrier and cancer therapeutics for
preclinical trial. We propose that bioimmunotherapy against
CD146 possesses promising therapeutic value toward tumor treat-
ment (Fig. 4D). This notion is supported by investigations from
other laboratories, which were tested in melanoma [129], in oste-
osarcoma [15], and in mesothelioma [130], respectively.

Altogether, these studies of anti-CD146 antibody imply that
combined treatment strategy of anti-CD146 immunotherapy with
other chemotherapeutic or anti-angiogenesis drugs may be a
promising anti-cancer modality.
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14. Concluding remarks

Increasing evidence demonstrates that CD146 is a multi-func-
tional molecule implicated in a variety of biological and patholog-
ical processes. As a CAM, CD146 functions as a molecular mediator
to facilitate inter-cellular interactions of homotypic or heterotypic
cells, or to intervene in interactions of cell-to-extracellular matrix
for responding to physiological signal. As a marker of endothelial
cells in developmental vascular system and in tumor blood vessels,
CD146 acts as a key player to be involved in neovascularization for
angiogenesis. As a functional marker of mesenchymal stem cells
(MSCs), CD146 behaves like a fate decision maker of MSCs to deter-
mine the tri-potency for their differentiation. Importantly, CD146
is implicated in the inflammatory response for promoting NK (nat-
ural killer) cells maturation and T cell homing to thymus. More
importantly, as a marker of melanoma progression and metastasis,
CD146 has been proved to be implicated in progression and metas-
tasis in various malignant cancer types. In most clinical cases, its
over expression contributes to virtually every phase of cancer pro-
gression, including tumor vascular angiogenesis, invasiveness, and
Please cite this article in press as: Z. Wang, X. Yan, CD146, a multi-functional
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metastasis, and its expression levels are positively correlated with
increased recurrence rate, poor prognosis, and poor survival rate.

Modern research has clearly portrayed CD146 as a receptor in-
volved in transmitting ‘outside-in’ signaling implicated in the dy-
namic rearrangement of cytoskeleton. Regarding its signal
transduction function, identifying its cognate ligand is an urgent
need. There are three forms of CD146 found in divergent species,
three isoforms of avian CD146 have been demonstrated to be gen-
erated from mRNA selective splicing; the origin of mouse CD146
two isoforms (CD146-l and CD146-s) are also from two splicing
transcripts. Two isoforms of human CD146 were reported, but
the human sCD146 has been believed to be produced from shed-
ding of the CD146-l. Therefore, these controversies about the vari-
ety and the origination of CD146 isoforms should be resolved in the
future. Soluble CD146 may play a role in regulation of thymus
homing, inhibiting progenitor/endothelial cell adhesion by com-
petitive binding to its ligands on the plasma membrane.

Better understanding the function of CD146 will not only bene-
fit for investigation of CD146-related physiological processes, but
also for CD146-assocaited pathological progressions, such as can-
cerous progression. It is crucial to define CD146 functional do-
mains through analysis of its crystal structure, which will be
useful for designing drugs against CD146, such as small molecule
peptide. Because it is well established that chronic inflammation
accounts for about 25% of all cancer cases worldwide, clarification
of CD146-mediated immune response during cancer progression
should be an interesting area about how CD146 influences the
aberrant immune response in cancers. Combining CD146-targeted
bioimmunotherapy with classical chemotherapy and radiotherapy
is a promising strategy because manifold dose regiments of the
antibodies could be applied to the patients without risk of escalat-
ing an immune reaction. We have successfully developed fully
humanized antibody to block CD146 for suppressing its metasta-
molecule beyond adhesion, Cancer Lett. (2012), http://dx.doi.org/10.1016/
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sis-promotion effects. The preclinical trial of using humanized
CD146 antibody has been used to treat cancer patients. Initiating
Phase I to Phase III clinical trial with humanized CD146 antibody
in patients with a variety of cancers is under our serious
consideration.
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